Sciencetech Solar Simulators | Sciencetech inc.

Solar Simulators

UHE Solar Simulator

Sciencetech Solar Simulators

Solar simulators are light sources with specialized characteristics that make them similar to natural sunlight in quantifiable ways. At minimum, solar simulators resemble natural sunlight in their specific spectral match, their low spatial non-uniformity, and their low temporal instability.

Solar simulators are described in terms of their classification in the format: “Class XYZ” in which the position of the letters is fixed:

  Class XYZ: X represents spectral match: the output irradiance is measured in several wavelength intervals. The percentage output irradiance in each interval is measured, and any one interval with the lowest classification match determines the total ranking (e.g. if all intervals but one are Class A, and one is Class B, the spectral match is Class B).

  Class XYZ: Y represents spatial non-uniformity: the output irradiance is measured at a set of evenly spaced points throughout the target area. The upper and lower range of those points determines the spatial non-uniformity classification. It is important to note that this parameter uses broadband measurements and does not break down the light into wavelength intervals.  

  Class XYZ: Z represents temporal instability: the output irradiance is measured over a specified time interval and the upper and lower range of these measurements determines the temporal instability. It is important to note that the relevant time scale for these parameters was determined with regard to silicon photovoltaics, so other applications may have different (including less stringent) requirements.

  Classifications of A+, A, B, and C for each parameter are defined by internationally recognized standards. Class A+ is primarily intended for use in calibration laboratories and is not considered necessary for manufacturing and qualification testing. 

  Other features that are not included in the standard classification but which may nonetheless be important in specific applications include:

  Collimation: the degree to which the rays of light are parallel. Due to the extreme distance between the sun and the earth’s surface, natural sunlight is highly collimated. In many applications, this is not highly relevant, but in others, especially space applications, it may be important. 

  Air Mass Filter: Depending on the specific conditions the solar simulator is intended to simulate, different spectral conditions will need to be adhered to. For example, greater UV output and greater overall intensity is required when simulating the environment just outside of the earth’s atmosphere (AM0) rather than simulating the environment present outdoors, on the ground, and at mid-latitudes (AM1.5G).  

Terrestrial or Space Solar Simulator: Depending on the specific conditions the solar simulator is intended to simulate, different spectral conditions will need to be adhered to. For example, greater UV output and greater overall intensity is required when simulating the environment just outside of the earth’s atmosphere (space solar simulator or AM0) rather than simulating the environment present outdoors, on the ground, and at mid-latitudes (terrestrial solar simulator or AM1.5G). AM1.5D and AM1.0D are less common air masses used in terrestrial solar simulators. 

 
 

Introduction to Our Ultra-High Efficiency Solar Simulator

Class AAA UHE-NL-150


We manufacture many other varieties of solar simulators and this demonstration is applicable to our other solar simulator types as well. All the instructions in the video will also be provided in the manual that comes along with the system.

 
 

Sciencetech Webinar: Versatile Solar Simulators

Explore Unlimited Research Opportunities


This webinar is an overview of the guidelines and principles behind designing and manufacturing Solar Simulators. Discussion topics include: why use a solar simulator, how to choose the right solar simulator, solar simulation specs, and an overview of our UHE Solar Simulator.

Sciencetech Solar Simulator Models

Class AAA and ABA (Spectral match, spatial non-uniformity of irradiance, temporal instability) 


Sciencetech Inc. designs and fabricates more than 30 different variants of Solar Simulators. Compliance to standards IEC 60904-9, ASTM E 927 Class A spectral match, Class A or B spatial non-uniformity of irradiance, Class A temporal instability. Take a look below

Solar Simulators Target Size Working Distance Spatial
Non-Uniformity
Square Side Circ. Diameter
Inches cm Inches cm Inches cm Class
SF300A 0.7 1.8 1 2.5 3 - 4 13
SF300B 1.4 3.6 2 5 3 - 4 13 B
SciSun 150 2 5 2 5 15 38 A
SciSun 300 2 5 2 5 15 38 A
2.1 5.2 3 7.5 18 45 B
SS1.0kW 3.5 8.8 5 12.5 30 75 B
SS1.6K 4.2 10.7 6 15.3 36 90 B
SS2.5K 5.6 14 7.8 20 42 105 B
SS0.5kW-UV 2.1 5.3 3 7.5 18 45 B
SS1.0kW-UV 3.5 8.8 5 12.5 35.2 88 B
SS1.6kW-UV 4.5 11.3 6.4 16 50 125 B
SS2.5kW-UV 5.6 14.1 8 20 42 105 B
SFR1.6K 6.3 16 8.5 21.5 ~12 30 B
SFR3.0K 8.4 21 11.5 29.5 ~12 30 B
Fiberized
(Optical Fiber)
Solar LightLine A1 1 2.5 1 2.5 4 10 A
Solar LightLine A4 1 2.5 1 2.5 4 10 A
Workstation
(with Chamber Opt.)
SL-38A-WS 1.5 3.8 1.5 3.8 10 25 A
SL-50A-WS 2 5 2 5 10 25 A
SL-60A-WS 2.4 6 2.4 6 10 25 A
UHE Work Station
(Ultra High Efficiency)
UHE-NS-075 3 7.5 3 7.5 8 20 A
UHE-NS-100 4 10 4 10 12 30 A
UHE-NL-150 6 15 6 15 20 50 A
UHE-NL-200 8 20 8 20 23 58 A
UHE-NS-250 10 25 10 25 26 65 A
UHE-NS-300 12 30 12 30 26 65 A
LASI 20 50 20 50 40 100 C
PSS1 40 100 40 100 40 100 A
PSS1.5 60 150 60 150 40 100 A
PSS2 80 200 80 200 40 100 A
FSSC 200-4000 Suns 2 5 2 5 ~0.5 ~1.2 A
Contact Us Today
Get more information or request a quote.
UHE Solar Simulator

The Solar Constant and Solar Simulation


The radiation from the Sun is measured in two ways for a variety of fields of research. The solar constant is the irradiance or intensity of light incident at the surface of the Earth’s atmosphere on a plane normal to the angle of incidence.


This value has been defined by the World Meteorological Organization to be 1366.7W/m2 outside the atmosphere. The irradiance of the Sun at the Earth’s surface varies under different conditions due to absorption and scattering effects in the atmosphere, and so a number of other constants are important in regards to the irradiance of a solar simulator.



Below the atmosphere the radiation emitted from the Sun can be divided into two components: direct radiation that comes from the Sun itself, and scattered radiation coming from the rest of the sky, including a portion reflected back from the ground. Solar simulators are adjusted to imitate the spectral distribution of sunlight for a variety of environments; to do this the spectral distribution from the xenon arc lamp source is altered and refined using Air Mass (AM) filters.


When discussing filters, the direct radiation spectrum is imitated using a direct (D) filter, and the total including scattered sky and ground radiation is matched by using a global (G) filter that imitates both components together.

Sciencetech AM Filters


Sciencetech’s AM filters are designed to be used individually for standard conditions, although they can also be arranged in series to produce other spectral distributions. Many solar simulator systems used by our competition require filters to be used in series to achieve the same performance as Sciencetech’s filters, for example using AM0 and AM1.0 filters in series to achieve a AM1.0 spectral distribution, whereas Sciencetech’s AM1.0 filter can be used alone to achieve the same result, reducing power loss and the cost of additional filters.

Sciencetech AM Filters
Sciencetech Xenon Arc Lamp Light Source

Most Sciencetech solar simulators use xenon arc lamps, which enables the system to produce an intense, collimated beam of light, similar to that of a 5,800oK blackbody. The biggest difference between the two is the xenon lines are present in the arc spectrum, and atmospheric absorptions in solar spectra, which is especially highlighted in the 800-1100nm range because of the intense line output of the lamp. An AM0 filter can reduce this effect so that the average level in specified bands matches solar levels above the atmosphere to better than ±25%, although complete elimination of the xenon lines while preserving the rest of the spectrum is impossible with a practical filter. AM1.0, 1.5 and 2.0 filters further modify the visible and UV portions of the spectrum for different sea-level conditions, and coupled with the use of high pressure Xenon arc lamps Sciencetech is capable of producing Class A standards for our solar simulators.

The graphs on the right show the typical output spectra of Sciencetech’s fully reflective solar simulators. These spectral irradiance curves combine the spectral curves of the xenon arc lamp source, air mass filter, and mirrors used inside the solar simulator beam homogenizer. Actual output spectra may vary due to the condition of the lamp and manufacturing tolerances of the air mass filters. In order to simplify visual comparison of the spectral curves of our solar simulators with ASTM E927-10 standard curves, the simulator outputs are normalized to the corresponding standard spectrum.

AM Profiles
Contact Us Today
Get more information or request a quote.
X

Product Category

View Filter

x
Clear all x

Filter Option



Sciencetech’s high powered fully reflective solar simulators can be used for UV applications by replacing the solar filters with UV filters. Sciencetech's proprietary Fully Reflective design allows the system to get far more UV power on target than our competitor's systems of equal size.

Please note that the wavelength definition of UVA and UVB in the COLIPA sun screen testing community is slightly different from the general scientific community.
This solar simulator includes testing and filters to verify the system meets COLIPA and USFDA spectral requirements.
Please discuss your specific spectral needs with your authorized Sciencetech technical sales staff.
38,230.00
Sciencetech’s high powered fully reflective solar simulators can be used for UV applications by replacing the solar filters with UV filters. Sciencetech's proprietary Fully Reflective design allows the system to get far more UV power on target than our competitor's systems of equal size.

Please note that the wavelength definition of UVA and UVB in the COLIPA sun screen testing community is slightly different from the general scientific community.
This solar simulator includes testing and filters to verify the system meets COLIPA and USFDA spectral requirements.
Please discuss your specific spectral needs with your authorized Sciencetech technical sales staff.
38,230.00 38230.0 USD
Price Valid only in North America


Sciencetech Inc. fully reflective solar simulators have the unparalleled ability to be realigned to allow the solar simulator to be used in many different customized scenarios. This allows the end user to reconfigure the simulator to provide a larger or smaller target with varying degrees of non-uniformity and power output. Most other simulators on the market today do not allow the end user to do this.
Sciencetech Solar Simulator System Alignment Kit includes:
1 sun calibrated alignment Silicon detector, laser and holder, UV protection glasses, Sciencetech multimeter.
Can be used on all of Sciencetech's fully reflective Solar Simulators.
550.00
Sciencetech Inc. fully reflective solar simulators have the unparalleled ability to be realigned to allow the solar simulator to be used in many different customized scenarios. This allows the end user to reconfigure the simulator to provide a larger or smaller target with varying degrees of non-uniformity and power output. Most other simulators on the market today do not allow the end user to do this.
Sciencetech Solar Simulator System Alignment Kit includes:
1 sun calibrated alignment Silicon detector, laser and holder, UV protection glasses, Sciencetech multimeter.
Can be used on all of Sciencetech's fully reflective Solar Simulators.
550.00 550.0 USD
Price Valid only in North America


The SSIVT is a complete electrical current-voltage (I-V) measurement system used to characterize photovoltaic cell performance. This current-voltage tester works by sampling current at different voltages of the photovoltaic cell with a variable impedance load. The system can generate I-V curve of samples like Solar cells.

This I-V Measurement System has a 4 wire Kelvin configuration to remove the resistance effects of the leads and bias the cell at specific voltages.

The I-V Measurement System SSIVT-20F includes:

A) Keithley SMU, Model 2400
- Power: 20W
- Max V: 200V
- Max I: 1A

B) Sciencetech’s SciPV: IV Software for Windows-based control.
- Windows 7/10 32/64bit

C) RS232 to USB dongle

Additional monitoring electronics are provided flash IV measurement

The SSIVT-20F works with all Sciencetech Flash Solar Simulators.


11,625.00
In stock
The SSIVT is a complete electrical current-voltage (I-V) measurement system used to characterize photovoltaic cell performance. This current-voltage tester works by sampling current at different voltages of the photovoltaic cell with a variable impedance load. The system can generate I-V curve of samples like Solar cells.

This I-V Measurement System has a 4 wire Kelvin configuration to remove the resistance effects of the leads and bias the cell at specific voltages.

The I-V Measurement System SSIVT-20F includes:

A) Keithley SMU, Model 2400
- Power: 20W
- Max V: 200V
- Max I: 1A

B) Sciencetech’s SciPV: IV Software for Windows-based control.
- Windows 7/10 32/64bit

C) RS232 to USB dongle

Additional monitoring electronics are provided flash IV measurement

The SSIVT-20F works with all Sciencetech Flash Solar Simulators.


11,625.00 11625.0 USD
Price Valid only in North America


The SSIVT is a complete electrical current-voltage (I-V) measurement system used to characterize photovoltaic cell performance. This current-voltage tester works by sampling current at different voltages of the photovoltaic cell with a variable impedance load. The system can generate I-V curve of samples like Solar cells.

This I-V Measurement System has a 4 wire Kelvin configuration to remove the resistance effects of the leads and bias the cell at specific voltages.

The I-V Testing Measurement System SSIVT-21C includes:

A) Keithley SMU Model 2401
-Power: 20 W
-Max Voltage: 20V
-Current Range: 1A

B) Sciencetech's SciPV-IV Software for Windows-based control.
Windows 7/10 32/64 bit

C) RS232 to USB dongle

The SSIVT-21C works with all Sciencetech Steady-State Solar Simulators.


Compatible with Steady State (Continuous) Solar Simulators only. Do not use the SSIVT-21C measurement system with flash solar simulators – it is not compatible with them (because it uses a Keithley 2401).
8,981.00
In stock
The SSIVT is a complete electrical current-voltage (I-V) measurement system used to characterize photovoltaic cell performance. This current-voltage tester works by sampling current at different voltages of the photovoltaic cell with a variable impedance load. The system can generate I-V curve of samples like Solar cells.

This I-V Measurement System has a 4 wire Kelvin configuration to remove the resistance effects of the leads and bias the cell at specific voltages.

The I-V Testing Measurement System SSIVT-21C includes:

A) Keithley SMU Model 2401
-Power: 20 W
-Max Voltage: 20V
-Current Range: 1A

B) Sciencetech's SciPV-IV Software for Windows-based control.
Windows 7/10 32/64 bit

C) RS232 to USB dongle

The SSIVT-21C works with all Sciencetech Steady-State Solar Simulators.


Compatible with Steady State (Continuous) Solar Simulators only. Do not use the SSIVT-21C measurement system with flash solar simulators – it is not compatible with them (because it uses a Keithley 2401).
8,981.00 8981.0 USD
Price Valid only in North America


The SSIVT is a complete electrical current-voltage (I-V) measurement system used to characterize photovoltaic cell performance. This current-voltage tester works by sampling current at different voltages of the photovoltaic cell with a variable impedance load. The system can generate I-V curve of samples like Solar cells.

This I-V Measurement System has a 4 wire Kelvin configuration to remove the resistance effects of the leads and bias the cell at specific voltages.

The I-V Measurement System SSIVT-2KF includes:

A) Keithley SMU, Model 2400 and BI100 loadbooster system
- Power: 2000W
- Max V: 200V
- Max I: 10A
BI100 provides 100x current multiplication when on 0.1A scale of K2400

B) Sciencetech’s SciPV: IV Software for Windows-based control.
- Windows 7/10 32/64bit

C) RS232 to USB dongle

Additional monitoring electronics are provided for flash IV measurement capability

The SSIVT-20KF works with all Sciencetech Flash Solar Simulators.
13,500.00
In stock
The SSIVT is a complete electrical current-voltage (I-V) measurement system used to characterize photovoltaic cell performance. This current-voltage tester works by sampling current at different voltages of the photovoltaic cell with a variable impedance load. The system can generate I-V curve of samples like Solar cells.

This I-V Measurement System has a 4 wire Kelvin configuration to remove the resistance effects of the leads and bias the cell at specific voltages.

The I-V Measurement System SSIVT-2KF includes:

A) Keithley SMU, Model 2400 and BI100 loadbooster system
- Power: 2000W
- Max V: 200V
- Max I: 10A
BI100 provides 100x current multiplication when on 0.1A scale of K2400

B) Sciencetech’s SciPV: IV Software for Windows-based control.
- Windows 7/10 32/64bit

C) RS232 to USB dongle

Additional monitoring electronics are provided for flash IV measurement capability

The SSIVT-20KF works with all Sciencetech Flash Solar Simulators.
13,500.00 13500.0 USD
Price Valid only in North America


The SSIVT is a complete electrical current-voltage measurement system used to characterize photovoltaic cell performance. This current-voltage tester works by sampling current at different voltages of the photovoltaic cell with a variable impedance load.

This IV measurement system has a separate terminal interface for voltage and current measurements. Each IV curve dataset is saved as a separate ASCII text file.

This I-V Testing Measurement System has a 4 wire Kelvin configuration to remove the resistance effects of the leads and bias the cell at specific voltages.

The I-V Measurement System SSIVT-T100C includes:

A) Keithly Model 2460 - Touchscreen
.Power: 100 W
.Max Voltage: 100V
.Current Range: 7A

B) Sciencetech's SciPV-IV Software for Windows-based control.
.Windows 7/10 32/64 bit

C) RS232 to USB dongle

Compatible with Steady State (Continuous) Solar Simulators only.

See brochure for more details.
17,205.00
In stock
The SSIVT is a complete electrical current-voltage measurement system used to characterize photovoltaic cell performance. This current-voltage tester works by sampling current at different voltages of the photovoltaic cell with a variable impedance load.

This IV measurement system has a separate terminal interface for voltage and current measurements. Each IV curve dataset is saved as a separate ASCII text file.

This I-V Testing Measurement System has a 4 wire Kelvin configuration to remove the resistance effects of the leads and bias the cell at specific voltages.

The I-V Measurement System SSIVT-T100C includes:

A) Keithly Model 2460 - Touchscreen
.Power: 100 W
.Max Voltage: 100V
.Current Range: 7A

B) Sciencetech's SciPV-IV Software for Windows-based control.
.Windows 7/10 32/64 bit

C) RS232 to USB dongle

Compatible with Steady State (Continuous) Solar Simulators only.

See brochure for more details.
17,205.00 17205.0 USD
Price Valid only in North America


The SSIVT is a complete electrical current-voltage measurement system used to characterize photovoltaic cell performance. This current-voltage tester works by sampling current at different voltages of the photovoltaic cell with a variable impedance load.

This IV measurement system has a separate terminal interface for voltage and current measurements. Each IV curve dataset is saved as a separate ASCII text file.

This I-V Testing Measurement System has a 4 wire Kelvin configuration to remove the resistance effects of the leads and bias the cell at specific voltages.

The I-V Measurement System SSIVT-T20C includes:

A) Keithly Model 2450 - Touchscreen
.Power: 20 W
.Max Voltage: 200V
.Current Range: 1A

B) Sciencetech's SciPV-IV Software for Windows-based control.
.Windows 7/10 32/64 bit

C) RS232 to USB dongle

The SSIVT-2KC works with all Sciencetech Steady State Solar Simulators.

Compatible with Steady State (Continuous) Solar Simulators only.

See brochure for more details.
10,620.00
In stock
The SSIVT is a complete electrical current-voltage measurement system used to characterize photovoltaic cell performance. This current-voltage tester works by sampling current at different voltages of the photovoltaic cell with a variable impedance load.

This IV measurement system has a separate terminal interface for voltage and current measurements. Each IV curve dataset is saved as a separate ASCII text file.

This I-V Testing Measurement System has a 4 wire Kelvin configuration to remove the resistance effects of the leads and bias the cell at specific voltages.

The I-V Measurement System SSIVT-T20C includes:

A) Keithly Model 2450 - Touchscreen
.Power: 20 W
.Max Voltage: 200V
.Current Range: 1A

B) Sciencetech's SciPV-IV Software for Windows-based control.
.Windows 7/10 32/64 bit

C) RS232 to USB dongle

The SSIVT-2KC works with all Sciencetech Steady State Solar Simulators.

Compatible with Steady State (Continuous) Solar Simulators only.

See brochure for more details.
10,620.00 10620.0 USD
Price Valid only in North America


Every time the illumination target size of a Fully Reflective Solar Simulator changes, the reflective mirrors inside the solar simulator that direct the light from the source to the target need to be refocused. Although this can be performed manually, the procedure is a hassle should the user need to change the target spot size frequently. The solar simulator would need to be shut down and have each internal mirror re-adjusted to support a different focal spot size. With this variable focus option re-adjusting the internal mirrors of the solar simulator is performed through a single knob without having to shutdown the solar simulator. This feature can also be used to vary illumination intensity by spreading the light over a larger area or concentrating the light into a smaller area.
3,675.00
Every time the illumination target size of a Fully Reflective Solar Simulator changes, the reflective mirrors inside the solar simulator that direct the light from the source to the target need to be refocused. Although this can be performed manually, the procedure is a hassle should the user need to change the target spot size frequently. The solar simulator would need to be shut down and have each internal mirror re-adjusted to support a different focal spot size. With this variable focus option re-adjusting the internal mirrors of the solar simulator is performed through a single knob without having to shutdown the solar simulator. This feature can also be used to vary illumination intensity by spreading the light over a larger area or concentrating the light into a smaller area.
3,675.00 3675.0 USD
Price Valid only in North America


Sciencetech is proud to offer our new line of Ultra-High Efficiency solar simulators.
By utilizing a completely new design for the beam homogenizer, the UHE systems are capable of far more efficiency and power unit than previously possible. All this without sacrificing temporal stability, spatial uniformity, or spectral matching.
This Class AAA Solar Simulator is capable of illuminating a 10 x10cm area and includes an integrated housing to allow the user to simply place their samples at the appropriate distance. It also includes the required optics to increase the collimation to 0.5 degrees, allowing the testing of large Concentrated Photovoltaic (CPV) cells, and for other applications requiring highly collimated solar light.
The simulator comes complete with an AM1.0D air mass filter (optional other AM filters are also available), power supply and arc lamp.
Sciencetech also offers extended spectral matching, both in the 300-400nm range and 1100-1800nm. Please speak to your authorized technical sales staff member for more information.

Please note that this device requires a 3m (minimum) vertical space, and 3m (minimum) horizontal space (the footprint is 3m x 1m x 3m).
172,750.00
In stock
Sciencetech is proud to offer our new line of Ultra-High Efficiency solar simulators.
By utilizing a completely new design for the beam homogenizer, the UHE systems are capable of far more efficiency and power unit than previously possible. All this without sacrificing temporal stability, spatial uniformity, or spectral matching.
This Class AAA Solar Simulator is capable of illuminating a 10 x10cm area and includes an integrated housing to allow the user to simply place their samples at the appropriate distance. It also includes the required optics to increase the collimation to 0.5 degrees, allowing the testing of large Concentrated Photovoltaic (CPV) cells, and for other applications requiring highly collimated solar light.
The simulator comes complete with an AM1.0D air mass filter (optional other AM filters are also available), power supply and arc lamp.
Sciencetech also offers extended spectral matching, both in the 300-400nm range and 1100-1800nm. Please speak to your authorized technical sales staff member for more information.

Please note that this device requires a 3m (minimum) vertical space, and 3m (minimum) horizontal space (the footprint is 3m x 1m x 3m).
172,750.00 172750.0 USD
Price Valid only in North America


Sciencetech is proud to offer our new line of Ultra-High Efficiency solar simulators.
By utilizing a completely new design for the beam homogenizer, the UHE systems are capable of far more efficiency and power unit than previously possible. All this without sacrificing temporal stability, spatial uniformity, or spectral matching.
This Class AAA Solar Simulator is specifically designed for the Concentrated Photovoltaic (CPV) characteristic testing market, and for any other application where a highly collimated beam (0.5 degrees) of Class A solar radiation is required.
It is capable of illuminating a 45 x 45 cm area, and includes an integrated housing area which sets your samples at the proper distance from the source.
The simulator comes with an integrated power supply and arc lamp. Sciencetech recommends our AM1.0D Air Mass Filter (sold separately) as an excellent choice for this system.
Optional extended spectral matching in the ranges of 300 to 400nm and 1100 to 1800nm is available. Please speak with your authorized Sciencetech technical sales staff member for more information.

Please note that this device requires a (minimum) of 3.5m of vertical space, and a (minimum) of 3.5m of horizontal space. The footprint is approximately 3.5 x 1 x 3.5m
Sciencetech is proud to offer our new line of Ultra-High Efficiency solar simulators.
By utilizing a completely new design for the beam homogenizer, the UHE systems are capable of far more efficiency and power unit than previously possible. All this without sacrificing temporal stability, spatial uniformity, or spectral matching.
This Class AAA Solar Simulator is specifically designed for the Concentrated Photovoltaic (CPV) characteristic testing market, and for any other application where a highly collimated beam (0.5 degrees) of Class A solar radiation is required.
It is capable of illuminating a 45 x 45 cm area, and includes an integrated housing area which sets your samples at the proper distance from the source.
The simulator comes with an integrated power supply and arc lamp. Sciencetech recommends our AM1.0D Air Mass Filter (sold separately) as an excellent choice for this system.
Optional extended spectral matching in the ranges of 300 to 400nm and 1100 to 1800nm is available. Please speak with your authorized Sciencetech technical sales staff member for more information.

Please note that this device requires a (minimum) of 3.5m of vertical space, and a (minimum) of 3.5m of horizontal space. The footprint is approximately 3.5 x 1 x 3.5m
205,750.00 205750.0 USD
Price Valid only in North America


Class: AAA (ASTM E927-19)
Collimation Angle: 3.95º half angle
Target Size: 150mm x 150 mm
Working Distance: 500mm
1000W Lamp Included
Integrated touch screen control unit
RS232 interface and software for remote operation included
Includes air mass filter AM1.5G (160-8023) and computer-controlled shutter.

This system includes 1 IEC 60320 C19 compatible power cable. Region-specific version must be selected at the time of placing an order (see product 491-9001).
29,750.00
In stock
Class: AAA (ASTM E927-19)
Collimation Angle: 3.95º half angle
Target Size: 150mm x 150 mm
Working Distance: 500mm
1000W Lamp Included
Integrated touch screen control unit
RS232 interface and software for remote operation included
Includes air mass filter AM1.5G (160-8023) and computer-controlled shutter.

This system includes 1 IEC 60320 C19 compatible power cable. Region-specific version must be selected at the time of placing an order (see product 491-9001).
29,750.00 29750.0 USD
Price Valid only in North America


Class: AAA (ASTM E927-19)
Collimation Angle: 2.6º half angle
Target Size: 200mm x 200 mm
Working Distance: 575mm
1000W Lamp Included
Integrated touch screen control unit
RS232 interface and software for remote operation included
Includes air mass filter AM1.5G (160-8023) and computer-controlled shutter.

Requires 220-240V/ 50/60Hz, 7.5-6.3A, Fused 15A, 250V
Requires 1 IEC 60320 C20 compatible power cables
40,490.00
In stock
Class: AAA (ASTM E927-19)
Collimation Angle: 2.6º half angle
Target Size: 200mm x 200 mm
Working Distance: 575mm
1000W Lamp Included
Integrated touch screen control unit
RS232 interface and software for remote operation included
Includes air mass filter AM1.5G (160-8023) and computer-controlled shutter.

Requires 220-240V/ 50/60Hz, 7.5-6.3A, Fused 15A, 250V
Requires 1 IEC 60320 C20 compatible power cables
40,490.00 40490.0 USD
Price Valid only in North America


Class: AAA (ASTM E927-19)
Collimation Angle: 2.35º half angle
Target Size: 250mm x 250 mm
Working Distance: 650mm
1600W Lamp Included
Integrated touch screen control unit
RS232 interface and software for remote operation included
Includes air mass filter AM1.5G (160-8023) and computer-controlled shutter.

Requires 220-240V/ 50/60Hz, 12.1-9.0A, Fused 15A, 250V
Requires 1 IEC 60320 C20 compatible power cables
58,600.00
In stock
Class: AAA (ASTM E927-19)
Collimation Angle: 2.35º half angle
Target Size: 250mm x 250 mm
Working Distance: 650mm
1600W Lamp Included
Integrated touch screen control unit
RS232 interface and software for remote operation included
Includes air mass filter AM1.5G (160-8023) and computer-controlled shutter.

Requires 220-240V/ 50/60Hz, 12.1-9.0A, Fused 15A, 250V
Requires 1 IEC 60320 C20 compatible power cables
58,600.00 58600.0 USD
Price Valid only in North America


Class: AAA (ASTM E927-10)
Non-uniformity < 3% over 36 measurement locations
Collimation Angle: 2.2º half angle
Target Size: 300mm x 300 mm
Working Distance: 650mm +/- 100mm
Integrated touch screen control unit
RS232 interface and software for remote operation included
Includes air mass filter AM1.5G (160-8023) and computer-controlled shutter.

Requires 220-240V/ 50/60Hz, 7.5-6.3A, Fused 15A, 250V
Requires 1 IEC 60320 C20 compatible power cables
70,125.00
In stock
Class: AAA (ASTM E927-10)
Non-uniformity < 3% over 36 measurement locations
Collimation Angle: 2.2º half angle
Target Size: 300mm x 300 mm
Working Distance: 650mm +/- 100mm
Integrated touch screen control unit
RS232 interface and software for remote operation included
Includes air mass filter AM1.5G (160-8023) and computer-controlled shutter.

Requires 220-240V/ 50/60Hz, 7.5-6.3A, Fused 15A, 250V
Requires 1 IEC 60320 C20 compatible power cables
70,125.00 70125.0 USD
Price Valid only in North America


Class: AAA
Collimation Angle: 4.5º half angle
Target Size: 75mm x 75 mm
Working Distance: 225 mm
300W Lamp Included
Integrated touch screen control unit
RS232 interface and software for remote operation included
Includes air mass filter AM1.5G (160-8023) and computer-controlled shutter.

This system includes 1 IEC 60320 C13 compatible power cable. Region-specific version must be selected at the time of placing an order (see product 491-9001).
18,506.00
In stock
Class: AAA
Collimation Angle: 4.5º half angle
Target Size: 75mm x 75 mm
Working Distance: 225 mm
300W Lamp Included
Integrated touch screen control unit
RS232 interface and software for remote operation included
Includes air mass filter AM1.5G (160-8023) and computer-controlled shutter.

This system includes 1 IEC 60320 C13 compatible power cable. Region-specific version must be selected at the time of placing an order (see product 491-9001).
18,506.00 18506.0 USD
Price Valid only in North America


Class: AAA
Collimation Angle: 4.1º half angle
Target Size: 100mm x 100 mm
Working Distance: 300mm
300W Lamp Included
Integrated touch screen control unit
RS232 interface and software for remote operation included
Includes air mass filter AM1.5G (160-8023) and computer-controlled shutter.

This system includes 1 IEC 60320 C13 compatible power cable. Region-specific version must be selected at the time of placing an order (see product 491-9001).
26,800.00
In stock
Class: AAA
Collimation Angle: 4.1º half angle
Target Size: 100mm x 100 mm
Working Distance: 300mm
300W Lamp Included
Integrated touch screen control unit
RS232 interface and software for remote operation included
Includes air mass filter AM1.5G (160-8023) and computer-controlled shutter.

This system includes 1 IEC 60320 C13 compatible power cable. Region-specific version must be selected at the time of placing an order (see product 491-9001).
26,800.00 26800.0 USD
Price Valid only in North America


Class: AAA
Collimation Angle: 3.85º half angle
Target Size: 125mm x 125 mm
Working Distance: 300mm
550W Xe Arc Lamp Included
Integrated touch screen control unit
RS232 interface and software for remote operation included
Includes air mass filter AM1.5G (160-8023) and computer-controlled shutter.

This system includes 1 IEC 60320 C13 compatible power cable. Region-specific version must be selected at the time of placing an order (see product 491-9001).
30,750.00
In stock
Class: AAA
Collimation Angle: 3.85º half angle
Target Size: 125mm x 125 mm
Working Distance: 300mm
550W Xe Arc Lamp Included
Integrated touch screen control unit
RS232 interface and software for remote operation included
Includes air mass filter AM1.5G (160-8023) and computer-controlled shutter.

This system includes 1 IEC 60320 C13 compatible power cable. Region-specific version must be selected at the time of placing an order (see product 491-9001).
30,750.00 30750.0 USD
Price Valid only in North America


Sciencetech's XE-LUM Luminaire is a low cost solution for researchers requiring large areas of illumination with good spectral matching but do not require high levels of spatial uniformity. The XE-LUM includes a 1.6kW Xenon arc lamp and efficient collection reflectors. At a working distance of 50cm an irradiance of 1 sun AM1.5G sun level can be achieved with an illumination area of 50x50cm. The area of illumination is up to 1.0m x 1.0m with a working distance of 1 meter.
The XE-LUM can achieve better uniformity when paired with multiple units in an array to flood the illumination plane.

The stand is an accessory that is sold separately. The XE-LUM can be arranged for vertical or horizontal illumination. In either configuration, the Luminaire can be rotated through 360 degrees in both sagittal and tangential planes.

200 to 240 VAC, 12.1 to 9.0 A.
Requires 1 IEC 60320 C19 power cord


Please speak with your authorized Sciencetech technical sales staff member for larger illumination areas, different spectral matches, or to have other customized options for this system.
11,220.00
In stock
Sciencetech's XE-LUM Luminaire is a low cost solution for researchers requiring large areas of illumination with good spectral matching but do not require high levels of spatial uniformity. The XE-LUM includes a 1.6kW Xenon arc lamp and efficient collection reflectors. At a working distance of 50cm an irradiance of 1 sun AM1.5G sun level can be achieved with an illumination area of 50x50cm. The area of illumination is up to 1.0m x 1.0m with a working distance of 1 meter.
The XE-LUM can achieve better uniformity when paired with multiple units in an array to flood the illumination plane.

The stand is an accessory that is sold separately. The XE-LUM can be arranged for vertical or horizontal illumination. In either configuration, the Luminaire can be rotated through 360 degrees in both sagittal and tangential planes.

200 to 240 VAC, 12.1 to 9.0 A.
Requires 1 IEC 60320 C19 power cord


Please speak with your authorized Sciencetech technical sales staff member for larger illumination areas, different spectral matches, or to have other customized options for this system.
11,220.00 11220.0 USD
Price Valid only in North America
Copyright © Sciencetech